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Abstract—The goal of semi-supervised learning (SSL) methods
is to reduce the amount of labeled training data required by
learning from both labeled and unlabeled instances.

Macskassy and Provost [1] proposed the weighted-vote rela-
tional neighbor classifier (wvRN) as a simple yet effective baseline
for semi-supervised learning on network data. It is similar to
many recent graph-based SSL methods (e.g., [2], [3]) and is
shown to be essentially the same as the Gaussian-field classifier
proposed by Zhu et al. [4] and proves to be very effective on
some benchmark network datasets.

We describe another simple and intuitive semi-supervised
learning method based on random graph walk that outperforms
wvRN by a large margin on several benchmark datasets when
very few labels are available. Additionally, we show that using au-
thoritative instances as training seeds — instances that arguably
cost much less to label — dramatically reduces the amount of
labeled data required to achieve the same classification accu-
racy. For some existing state-of-the-art semi-supervised learning
methods the labeled data needed is reduced by a factor of 50.

I. INTRODUCTION

Traditional machine learning or supervised learning meth-
ods for classification require large amounts of labeled training
instances, which are often difficult to obtain. In order to reduce
the effort required to label the training data, two solution
have been proposed: semi-supervised learning methods [5]
and active learning methods (e.g., [6], [7]). Semi-supervised
learning methods learn from both labeled and unlabeled
instances, reducing the amount of labeled instances needed
to achieve the same level of classification accuracy. Active
learning methods reduce the number of labels required for
learning by intelligently choosing which instances to ask to
be labeled next.

The field of semi-supervised learning has been very active in
recent years, and many of the learning methods proposed fall
under the category of graph-based semi-supervised learning
[1]–[3], [8]–[11], which views the instance space as a graph
where instances are the nodes and similarities between the in-
stances define weighted edges. This representation is powerful
and exciting; almost any dataset can be represented as a graph
and many graph algorithms and theories can be applied.

However, as the number of proposed methods increases,
many questions remain unanswered. How do these methods
relate to each other? Which methods do better, under what
condition, and on what type of data? How is one method better
than the other and why is it better? What method should be
use as a strong baseline when working on a particular type
of data?

In this work, we aim to address some of these questions,
with a special focus on when there are very few labels.

First, we describe a semi-supervised learning method based
on random graph walk and relate it to methods that fall under
the class of graph walk-based algorithms, such as [10]–[12].
The core computation of these methods usually involve finding
the dominant eigenvector of some form of affinity matrix
or transition matrix of the graph. The proposed method is
probably is simplest of them all, yet it is also intuitive and
extremely effective and captures the power of these graph
walk-based methods.

Second, in the quest for reducing the cost of obtaining
instance labels, one issue has not been considered in prior
work: that in many practical settings, some instances are easier
to label than others. For example, in classifying websites, a
better-known website is very likely easier for a domain expert
to label, since the expert would be more likely to be familiar
with it, and since the website would be less likely to be
difficult-to-evaluate because of having content that is limited
(or simply incoherent). In selecting seeds (labeled instances),
we evaluate using highly authoritative instances. In addition
to being arguably easier to label, these authoritative instances
are arguably more likely to spread their influence (and their
labels) to their neighbors, therefore making them better seeds
in a semi-supervised learning setting.

We test the proposed methods on five network datasets (i.e.,
data in the form of a graph, where each node is a learning
instance) and show the proposed methods outperforms some
existing semi-supervised learning methods [1], [9] by a large
margin when the number of labeled instances is small. In
addition, the classification performance is competitive with
some state-of-the-art fully supervised methods for learning in
graphs [13], [14] — a surprising result given that many fewer
labels are used, and the methods we propose (as currently
implemented) makes no use of the “content” of the instances,
only the graph structure.

Based on the experimental results, we discuss why random
graph walk-based methods outperform some of the existing
methods and point out what may hinder these methods from
fully exploiting unlabeled data when very few labeled training
instances are given.

Finally, we highly recommend the proposed graph walk-
based method as a strong baseline for future research in
semi-supervised learning. In addition to its high classification
accuracy, the method is simple to implement and is based on a
family of well-studied algorithms (random graph walks), and
it is also highly scalable, requiring time linear in the number
of edges of the graph.
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II. THE MULTIRANKWALK ALGORITHM

The proposed semi-supervised learning method is based
on random graph walk. Its basic component is similar to
PageRank [15], personalized PageRank [16], and random walk
with restart (RWR) [17]. In general, given a graph G = (V, E),
random walk algorithms such as the three mentioned above
return as output a ranking vector r satisfying the following
equation:

r = (1− d)u + dWr (1)

where W is the weighted transition matrix of graph G where
transition from i to j is given by Wij = 1/degree(i). u is a
normalized teleportation vector where |u| = |V | and ||u||1 =
1. d is a constant damping factor. The ranking vector r can
be solved for by finding the dominant eigenvector of (1 −
d)(I − dW )−1u or iteratively substituting rt with rt−1 until
rt converges. Equation 1 can be interpreted as the probability
of a random walk on G arriving at node i, with teleportation
probability (1−d) at every step to a node with distribution u.
For later use we will define the ranking vector r as a function
of G, u, and d: r = RandomWalk(G,u, d).

The difference between some of the different random walk
algorithms lies in the use and interpretation of u. In PageRank
[15], where G is a network of hyperlinked web pages, u is
simply a uniform vector; with probability 1 − d a web surfer
gets tired of following the links he sees and jump to a random
page. In personalized PageRank [16], each web surfer, instead
of jumping to a random page, jumps to a page according
to his or her unique preference, the preference encoded as
a normalized distribution u. In random walk with restart, u is
an all-zero vector except for ui = 1 where i is the starting
node; at every time step the random walker follows an edge
with probability d or jumps back to i (restarts) with probability
1− d.

In our proposed method, the graph G describes data in a
classification learning framework: the nodes are instances and
edges represent similarity or relations between the instances.
Labeled training instances of each class is described by a
vector u, the seed vector, where each non-zero element
corresponds to a labeled training node. The random walk
describes classification as a process of finding similar instances
based on citation or recommendation of the current instance.
For each class c, at every time step the process may follow a
recommendation with probability d or it may decide to start the
process again at an instance labeled c with probability 1− d.
The process is repeated for every class and the class of an
unlabeled instance is decided by which class c’s process visited
the instance most often. The learning algorithm is formally
described in Figure 1.

We will refer to this algorithm as MultiRankWalk, as
it creates multiple rankings using random walks from seed
instances. This method is similar to some previously described
methods [10], [12], [18]; though the lack of experimental
results and comparison to other methods in prior work makes
it difficult to assess its effectiveness on real network datasets.

Given: A graph G = (V, E), corresponding to
nodes in G are instances X , composed of unlabeled
instances XU and labeled instances XL with
corresponding labels Y L, and a damping factor d.
Returns: Labels Y U for unlabeled nodes XU .

For each class c

1) Set ui ← 1, ∀Y L
i = c

2) Normalize u such that ||u||1 = 1
3) Set Rc ← RandomWalk(G,u, d)

For each instance i

• Set XU
i ← argmaxc(Rci)

Fig. 1. The MultiRankWalk algorithm.

The contributions of this paper are 1) more datasets, many of
them used evaluating other semi-supervised methods, are used;
2) comparison is made to other baselines, including Gaussian-
fields classifier, stacked learning, and spectral clustering meth-
ods; 3) seed selection in a semi-supervised setting; 4) focus
on small number of seeds; and 5) the analysis of its relation
to and difference from wvRN and Gaussian-fields classifier.

III. RELATED WORK

The idea of using random walks to propagate labels from
labeled nodes to unlabeled nodes in graph is not new; for
example, the local and global consistency method [10] have
at its core iterating the equation F (t+1) = αSF (t)+(1−α)Y
until convergence for each class, where F , S, α, and Y are
analogous to r, W , d, and u in Equation 1; and in [12] the
resulting rank vectors are used as features in a SVM classifier.
Perhaps less obviously, the conditional likelihood component
in [11] can also be seen as random graph walks, with the
difference that the walks do not restart (no damping factor) and
a heuristic stopping criterion is used instead of convergence.

As with many other semi-supervised learning methods, in
using graph walk-based methods we make the assumption
that the instance graph is homophilous — i.e., that instances
belonging to the same class tend to link to each other or have
higher edge weight between them. A homophilous instance
graph can be constructed using similarity functions on instance
features, but it is also found in many naturally occurring
networks—including networks of websites, blogs, and paper
citations [19] — and often arises when a single network is
jointly constructed by several communities.

With graph-based approaches comes the question of how
the graph is constructed. When instances are not explicitly
linked to each other, usually a similarity function is applied
to local features of each pair of instances to derive weighted
edges between them [9]. When instances are explicitly linked
to each other, such as a network of websites connected by
hyperlinks, the edges simply correspond to the binary presence
of a link (or are weighted by the number of links between two
instances). In many datasets, hybrid approaches are used when
both local features and explicit links are available [20].
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The advantage of feature-derived edges is that they can be
potentially used on almost any data without explicit links.
However, the algorithm could be sensitive to the similarity
function and the similarity function may require re-engineering
when the same algorithm is applied to a different dataset. In
addition, since the similarity function is applied to all pairs of
instances, the graph might be very dense, incurring a heavy
computation cost. Having explicit, naturally occurring links
means a lower computation cost and there is no need to
engineer similarity functions; however, not all data comes with
explicit links. In this work we will focus on network datasets
with explicit links as edges.

Active learning methods [6], [7], [21] aim also to reduce
the number of labels required by computing which instance,
when the label is known, will best help them in classifying
the rest of the data. Active learning is usually done in an
interactive setting, where the algorithm selects an instance,
and then user labels the instance. This process is repeated,
with the classification accuracy going up at each iteration
(hopefully more than if the selected instances were chosen
at random). There is an important difference between active
learning methods and our proposed method of selecting seeds:
with our proposed method the calculation is done once at the
beginning instead of in every round of learning.

Classification of data in graphs, called collective classi-
fication or relational learning (e.g. web page classification
[22] and scientific paper classification [13], [14]), has also
been studied in a more traditional machine learning setting.
Although these method do make use of the explicit links in the
data, they are supervised learning methods and still require a
large amount of labeled data. In this paper we will compare our
semi-supervised method against of these supervised methods.

Clustering, or unsupervised learning methods are similar
to graph-based semi-supervised learning methods in that they
usually rely on similarity functions or the graph structure of the
data to cluster instances into k clusters, k being a pre-specified
parameter or a learned threshold based on another parameter.
A class of these methods, called spectral clustering methods
[23], [24], are similar to our approach in that the algorithms
have a direct random graph walk interpretation. We will also
compare our method with some spectral clustering methods
on some two-class datasets.

IV. SEED SELECTION

Semi-supervised learning methods require labeled training
instances asseeds, and we propose using more authoritative
instances. There are two advantages to prefer highly authori-
tative instances as seeds:

First, popular or authoritative instances are easier to obtain
labels for because a) domain experts are more likely to recog-
nize them and label them without comprehensive assessment
of the instances, resulting in less time and human effort spent,
and b) popular or authoritative instances are more likely to
have already labels available. As an example, websites such
as www.etalkinghead.com contain blog directories that are or-
ganized according to political leaning. Although the directories

contain only a small percentage of all the political blogs out
there (150 liberal, 148 conservative, and 48 libertarian blogs
as of the time of this writing), these are likely highly popular
and authoritative blogs and can be used as seed instances.

Second, popular or authoritative instances will likely to have
many incoming links (other instances are more likely to link
to or cite them) and sometimes outgoing links as well (in the
case of blogs, popular blogs are usually well-kept and contain
more entries and links). Having many incoming and outgoing
links helps to propagate the labels faster and more reliably
when using a graph-based semi-supervised learning method
such as [1] and the MultiRankWalk proposed in the previous
section.

Based on these assumptions, we propose a general seeding
method to test our hypothesis: ranked-at-least-n-per-class.
This method takes as input a ranked list of instances according
to a preference measure, the most preferred instance on top.
Given a number n, we start at the top and label each instance
as a seed instance going down until we have at least n seeds
per class labeled as seed instances. This method simulates
a domain expert labeling a given list of instances (ordered
according to some preference measure) and labeling instances
one by one until he or she feels an adequate number of
instances have been labeled for each class. In addition, this
seeding method makes sure there is at least one instance of
every class in the training data while preserving a natural
labeling process (as opposed to a class-stratified training data
that gives the classifier perfect prior probabilities).

For all experiments in this work we vary n and test these
different seed ranking preferences: Random seeding is a
baseline measure that randomly orders the list of instances.
Link Count seeding ranks the instances based on the number
of edges connected to it; instances with more connecting edges
are preferred. PageRank seeding ranks the instances based
on PageRank [15]; nodes with higher PageRank scores are
preferred.

V. DATASETS

To assess the effectiveness of our method, we test it on
five different datasets. The first three datasets are from the
political blog domain: UMBCBlog, AGBlog, and MSPBlog.
The other two are from the scientific paper citation domain:
Cora and CiteSeer. All of these datasets contain explicit links
between the instances in the form of hyperlinks or citations.
In constructing the graph from these datasets, we take the
simplest approach possible; in each case the graph contains
only undirected, unweighted edges.

The UMBCBlog dataset is constructed as in [25]: first we
find a set of overlapping blogs between the ICWSM 2007
BuzzMetrics [26] dataset and the labeled dataset in [19], then
a graph is formed using links found in the BuzzMetrics dataset
posts, and lastly we take the largest connected component of
the graph with 404 nodes labeled either liberal or conservative
and 2725 edges.

The AGBlog dataset is the largest connected component
from the graph of the political blog dataset found in [19], with
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1222 nodes labeled liberal or conservative and 19021 edges.
Although the nodes in UMBCBlog is a subset of those found
in AGBlog, in the UMBCBlog dataset, the links are gathered
in May 2006 from the content of the blog posts; whereas in
the AGBlog dataset, the links are from two months before the
2004 presidential election and are extracted mostly from the
sidebars of the blogs [19]. The links from the UMBCBlog
dataset can be considered more transitory, pertaining to the
blogger’s interests at the time of the post, while links from the
AGBlog dataset can be considered more stationary, indicating
the blogger’s long-term interests and recommendations.

The MSPBlog dataset is provided by the researchers at
Microsoft Live Labs and is constructed separately from the
above two datasets. From a large collection of automatically
crawled news and blog sites, 1031 political ones are manually
labeled either as liberal or conservative with 9316 links
between them.

The other two datasets are scientific paper citation datasets.
The Cora dataset contains papers from 7 categories and the
CiteSeer dataset contains papers from 6 categories. The class
names and class label distributions for these two datasets and
the details of their construction is described in [13]. Again, we
extract the largest connected component from these datasets
and end up with 2485 papers for the Cora dataset and 2110
papers for the CiteSeer dataset. An edge exist in the graph
between node a and node b if paper a cites paper b or vice
versa, and we have 5429 and 4732 edges respectively for each
dataset.

VI. EXPERIMENTS AND RESULTS

Description of experiments and discussion of results are
divided into three subsections. In the first subsection, we
compare our random walk learning method, MultiRankWalk,
against Zhu [9] and Macskassy’s [1] semi-supervised learning
algorithm on five network datasets and the effect of different
seed preferences on these learning algorithms. In the second
subsection, we compare MRW with graph-based clustering
methods and a state-of-the-art collective classification algo-
rithm. In the last subsection, we vary the parameter d of MRW
and observe its effect on classification performance.

In all classification performance figures, we vary the number
of labeled instances by changing the seeding parameter n
mentioned in Section IV. For UMBCBlog, AGBlog, Cora, and
CiteSeer, we use n = 1, 2, 5, 10, 20, and 40; for MSPBlog,
we use an additional n = 80. Note that in the figures to
follow x-axis refers to the number of labels and not n. In each
experiment, all instances not used as labeled training instances
is used as test data; so as the amount of training data increases
the number of test data decreases. The reported numbers when
random seeding is involved are averaged over 20 runs each.

A. Comparing Semi-Supervised Algorithms and Seeding Pref-
erences

The weighted-vote relational neighbor classifier (wvRN)
[1] is a simple label propagation algorithm that estimates
class-membership probabilities by assuming the existence of

homophily. It is one of the best classifiers on many benchmark
network datasets and as noted by Macskassey and Provost
in [1], Zhu’s harmonic functions classifier [9] is ”essentially
identical” to wvRN except with a principled semantics and
exact inference. Many other recent semi-supervised learning
methods use a similar approach [2], [3]. We compare Multi-
RankWalk’s performance with Zhu and Macskassy’s algorithm
on the five network datasets using different seed preferences.

Due to space limitations, we show only the macro-averaged
F1 score instead both the accuracy and the macro-averaged F1
score. The accuracy (ratio of correctly labeled test instances
to the total number of test instances), though not shown, are
always higher than the F1 score in the experiments we ran.
The macro-averaged F1 score is defined as 1

N

∑N
c=1

2PcRc

Pc+Rc

where N is the number of classes and Pc is the precision of
the classifier for class c and Rc is the recall of the classifier
for class c. The macro-averaged F1 score is usually preferred
when the class label distribution is unbalanced, which is
true of most of the datasets presented here. Figure 2 shows
the classification performance on the five datasets with the
three seeding algorithms; the rows are the different datasets
and the columns are the different seed preferences. RMW
is compared against wvRN in each chart, and the algorithm
that significantly (with p¡0.001) outperforms the other at a
particular amount of labeled data is indicated by a box around
the point. Details of the significance tests will be described
later.

We make a few observations in this figure. First, MRW
is able to achieve high classification accuracy with very few
labeled instances. The first point on the charts shows that on
UMBCBlog and AGBlog, MRW achieves F1 score of above
0.9 on with just two labeled instances (training data size is
0.5% and 0.16% of test data size, respectively). On MSPBlog
MRW achieves F1 scores close to 0.9 with just three or four
labeled instances (0.3% of test data size). On the seven-class
Cora dataset MRW achieves scores above 0.6 with about 20
labeled instances and on the six-class CiteSeer dataset MRW
achieves 0.5 with about 30 labeled instances (0.8% and 1.4%
of test data size, respectively).

Second, on most datasets and seed preferences MRW out-
performs wvRN by a large margin when the amount of training
data is very small. The only exception to this is the CiteSeer
dataset when wvRN is paired with LinkCount or PageRank
seeding — MRW, though still better than wvRN with about 30
or 60 seeds, it is not significantly so, and wvRN significantly
outperforms MRW from 100 to 250 seeds. On all datasets
MRW and wvRN F1 scores converge when the training data
size reaches above 30% of the test data size.

Third, the performance difference between MRW and
wvRN is the greatest when seeds are chosen randomly. This
suggests that MRW is more robust to varying quality of the
labeled data.
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Fig. 2. All five datasets results varying the learning algorithm. The x-axis indicates number of labeled instances and y-axis indicates labeling macro-averaged
F1 score. Square block around a point indicates statistical significance with p < 0.001.
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Fig. 3. wvRN results varying the seeding method. The x-axis indicates
number of labeled instances and y-axis indicates labeling macro-averaged
F1 score. Square block around a point indicates statistical significance with
p < 0.05.

Figure 3 and 4 shows the classification performance on the
five datasets with the two algorithms, this time the different
seed preferences are compared against each other on the charts.
If at a particular point, either LinkCount or PageRank seed
preference significantly (with p¡0.05) outperforms Random
seeding, a box is put around the point. Note that points are not
aligned exactly due to the ranked-at-least-n-per-class seeding
described in section IV.

With wvRN, we see that preferring more authoritative seeds
dramatically outperforms random seeds, especially when the
number of labeled instances is small; on the blog datasets pre-
ferring more authoritative seeds reduces the amount of labeled
instances required to reach the same level of performance by a
factor of 40 to 50! Out of the two authority-based preferences,
PageRank seems to be a little better and more consistent
in yielding quality seeds, as seen in the first few points of
UMBCBlog, AGBlog, and CiteSeer datasets.

With MRW, the difference between random seeds and the
authoritative seeds are not as dramatic, one reason being that
on the political blog datasets the F1 is already very high
with random seeding. However, a significant difference is still
observed on AGBlog, MSPBlog, and Cora datasets when the
number of labeled instances is very small. When comparing
LinkCount and PageRank, again we see PageRank a better and
more stable seed preference, and the performance of different
seed preferences converge when training data is large enough.
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Fig. 4. MRW results varying the seeding method. The x-axis indicates
number of labeled instances and y-axis indicates labeling macro-averaged
F1 score. Square block around a point indicates statistical significance with
p < 0.05.

B. Versus Relational Learning and Spectral Clustering

To show how much classification power can be gained from
link structure alone, we compare the results of our algorithm
against some supervised relational learning methods, shown in
Figure 5. The numbers shown in the charts are accuracy scores.
The algorithms are labeled on the figures as follows: MRW is
MultiRankWalk algorithm using PageRank seeds; Kou is the
best result reported in [14]; Kou-Rerun is the result from our
re-run of Kou; Kou-Rerun-C is our re-run of Kou using the
connected version of the dataset; Lu is the best result reported
in [13]; Content-Kou is the content-only baseline reported in
[14]; and Content-Lu is the content-only baseline reported
in [13]. MRW shows outstanding performance considering
the simplicity of the algorithm, the small number of labeled
instances required, and using only the link structure. Following
[1] we recommend label propagation algorithms such as MRW
as a strong baseline for semi-supervised learning or supervised
relational learning for network data.

MRW is based on random walks on graphs, and its strong
performance on the political blog datasets may make one
wonder if these datasets are also easily divided into two groups
by spectral clustering methods — which also have direct
random walk interpretations — without using any labeled data.
The results of MRW compared against two spectral clustering
algorithms are shown in Figure 6. The numbers shown in the
charts are accuracy scores. The algorithms are labeled on the
figures as follows: MRW is MultiRankWalk algorithm using
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Fig. 5. Citation datasets results compared to supervised relational learning
methods. The x-axis indicates number of labeled instances and y-axis indicates
labeling accuracy.

PageRank seed preference; Spectral Clustering is both the
spectral clustering algorithm proposed by Ng et al. [24] and
Normalized Cuts [23] — they have the exact same perfor-
mance on these two datasets. Content-Only is the content-
only Naı̈ve Bayes using bag-of-words features, shown here for
comparison; the AGBlog dataset does not have one due to its
lack of content data. The results show that spectral clustering
methods were indeed able to cluster the two classes as well
as MRW on UMBCBlog, they failed to do so completely with
AGBlog. We did further experiments to investigate why this
was the case, but will only include it in future work due to
space limitations.
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Fig. 6. Two political blog datasets results compared to spectral clustering
methods. The x-axis indicates number of labeled instances and y-axis indicates
labeling accuracy.

C. Damping Factor

The effect of the damping factor d on the proposed learning
method is shown in Figure 7; the general trend is that a
higher damping factor consistently result in slightly better
classification performance. This suggests that it is important
for the algorithm to propagate the labels further by not
”damping” the walk too much, especially when the number
of labeled instances is small.

D. Significance Tests

For comparing significant difference between wvRN and
MRW when using CountLink and PageRank seed preferences,
a one-tail paired McNemar’s test on the classification result
of individual instances is used with p < 0.001 reported
as significant. For comparing significant difference between
wvRN and MRW when using Random seed preference, the
20 accuracy scores from the 20 random trials are used in a
one-tail Mann-Whitney U test with p < 0.001 reported as
significant. For comparison between the random seeding and
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Fig. 7. Results on three datasets varying the damping factor. The x-axis
indicates number of labeled instances and y-axis indicates labeling macro-
averaged F1 score.

authority-based seed preferences, the classification result of
individual instances is used in a one-tail Mann-Whitney U
test with p < 0.05.

VII. DISCUSSION

Why does MRW work better than wvRN? And why is the
difference more pronounced when given random seeds? The
above result showing that using high authority seeds greatly
boosts the classification performance of wvRN may offer a
clue to why MultiRankWalk work better on these datasets.

If we consider high authority instances as having more
classification power (either due to how the graph is naturally
formed or due to them being more“connected” to other in-
stances), we take advantage of that power when we use them
in wvRN as seeds and that power is lost when seeds are chosen
randomly. Equation 2 defines the class probability in wvRN
and Equation 3 is the harmonic property of the unlabeled
points in [9]:

P (xi = c|Ni) =
1
Z

∑

vj∈Ni

wi,j .P (xj = c|Nj) (2)

f(j) =
1
dj

∑

i j

wi,j .f(i) (3)

In both cases, either probability P (xi) or the function f(j),
the maximum value is 1, which is the constant value for all
labeled instances, and any unlabeled instance cannot have a
value more than a labeled instance. This property, or limitation,
prevents any instance, regardless of the graph structure, to have
more “influence” over the graph (or the Gaussian field) than
a labeled seed. A particular unlabeled instance could in fact
be well-connected to several labeled seeds of the same class
and many unlabeled instance, and therefore should have more
influence over the network. When there are many labels this
constraint is probably not important but when the number
of labeled instances is small and distributed randomly, the
function over the Gaussian field may be bumpy rather than
smooth.

Graph walk methods, on the other hand, do not have
this constraint; a unlabeled instance could have much more
influence on the graph (i.e., having a higher per-class rank
than a seed instance), which exploits more fully the power of
the unlabeled data. A toy example shown in Figure 8 illustrates
this idea. The top graph shows nodes before running any
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classifiers; an S indicates labeled seed nodes and the color
indicates class prediction. The middle graph shows node labels
predicted by wvRN and the bottom graph shows node labels
predicted by MRW. The relative sizes of nodes in the graphs
indicate how strongly the algorithm believes the node labels
to be of the color shown. Besides having a more reasonable
prediction, the sizes of nodes in the bottom graph show that
graph walk predictions results in a smoother propagation graph
with the center of the “clusters” having the highest confidence,
and higher confidence in turn means stronger propagation
influence. In addition, it shows that wvRN is more sensitive
to the location of the labeled seed nodes; in this case, having
a seed node near the fringe of the “cluster” resulted in an
incorrect prediction.

Fig. 8. Right: Labels predicted by wvRN. Left: Labels predicted by MRW.
The seed nodes are labeled S and relative sizes of nodes in the graphs indicate
how confident the algorithm is in its prediction and how strongly a node will
influence its neighbors.

VIII. SCALABILITY

The best seed preference algorithm is based on PageRank,
so the run time is linear to the number of edges in the graph
and converges fairly quickly even when applied to large graphs
[15]. The proposed algorithm is based on random graph walk
with restart, and the run time is also linear to the number
of edges in the graph; the core algorithm itself has been
well-studied and several performance-enhancing methods have
been proposed to minimized the amount of storage and time
required such as the one found in [17].

IX. CONCLUSIONS

We proposed MultiRankWalk, a semi-supervised learning
method as a simple yet intuitive representative of a class
of semi-supervised learning methods based on random graph
walks, and show it to significantly outperform other semi-
supervised and supervised learning methods when only a few
labeled instances are given on five network datasets.

We also show that using high authority labeled instances
dramatically reduce the amount of labels required to achieve
high classification performance, which sheds light on why
random graph walk-based methods have an advantage over
methods such as Gaussian fields classifier when the size of
training data is small.

Due to this advantage and its simplicity and classification
accuracy, we highly recommend MultiRankWalk as a strong
baseline for future graph-based semi-supervised learning.
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